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Series

Introduction

The use of series can be a powerful method for solving physics problems under a variety of
circumstances

C Problems which have no easy analytical solution, but for which an approximate solution can
be found. An example is the electrostatic field produced by a pair of equal but opposite
charges (a dipole) in the approximation that the distance the dipole is large in comparison
to the dimensions of the dipole.

C Problems for which an analytic solution can be found, but for which the solution is difficult
to use. An example is the Langevin function which is encountered in a treatment of the
polarization (magnetization) produced by reorientation of existing dipole by an electric
(magnetic) field.

Definition of a series

A general description of a series is

We need a method to find the coefficients ai. If we take this description and differentiate n times,
then

Finally if we put x=0 into equation (2) the right hand side becomes a single term, that with i=n.
(Note 0!=1.) Solving for an we have the result known as the McLaurin series

The Taylor series is similar, except that instead of being useful for small values of x close to zero,
it is used for values of x close to some fixed value a. With x=a+h
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Binomial Series

If we set f(x)=(1+x)n, and evaluate the derivatives in the McLaurin series, then we get the result

Note that if n is a positive integer this series terminates with the term with i=n. For n a negative
integer, or if n is non-integral, the series never terminates.

A physical example - Helmholtz coils

The arrangement known as the Helmholz coils consists of the parallel
coils each of N turns and radius R, separated by a distance R. It has the
property, as we shall show that the field along the axis close to the
center, is nearly uniform.

The field due to a single coil of N turns and radius R, at a distance d
along the axis is given by

where m = NIA = NiπR² is the magnetic moment of the coil. For the Helmholtz coils we have two
such terms. At the center of the arrangement (the origin for the axes) d=½R for each and so

To calculate the field at a point P along the axis close to the center, let z be the position along the
axis relative to the center, in which case d1=½R+z for one coil and d2=½R-z for the other. The total
field is therefore
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The Langevin function

(12)

Each bracket can be expanded as a Binomial Series, setting n=-3/2 and

with the ‘+’ sign in the first term, and the ‘-’ sign in the second. The computation is tedious.  Each
series has to be computed to at least terms in x4, since the lower order terms cancel. The final result
is

The first term corresponds to the previous result for the field at the center (z=0). The second term
is then the correction for points close to but not at the center. As can be seen this correction varies
as (z/R)4, and since close to the center znR this term is very small, and so B is almost independent
of z.

Some common series

By evaluating the derivatives in the Taylor or McLaurin series an series expression for any f(x) can
be found. Some common examples are given below.

A physical example - the Langevin function

The Langevin function is found in the description of
the polarization of a material (such as water) which is
composed of molecules which already possess an
existing electric dipole moment, and in the
magnetization of paramagnetic materials. It has the
form
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where λ is defined by the properties of the material and the applied field. It is important to recognize
that λ is a very small number for nearly all realistic physical situations. By using a series
approximation to this function, it behavior for small values of λ is more easily understood.

We will start by making substitutions for the exponential functions in equation (12) using the
expressions in equation (11)

The two terms can now be combined over a common denominator

Finally, if we remember that λ is a very small number, then the leading term in each of the numerator
and denominator is much larger than any of the succeeding terms. We can therefore drop the
succeeding terms, and then cancel factor of λ² to get the final result

which is a much easier expression to understand than that given by equation (12).


